

Solar Wind Access to Lunar Regolith

Anton V. Kulchitsky, Dana M. Hurley, Jerome B. Johnson, Paul Duvoy, Michael Zimmerman

Solar Wind and Regolith

How deep into regolith the solar wind particles can be implanted depending on solar wind incidence angle, regolith particle size distribution and porosity?

Discrete Element Method

- Can represent each individual particle of granular material
- Computes forces on contacts and provides full dynamics integration
- COUPi model allows different groups of particles with different behavior
- May use polyhedral particles and spherical particles together

Regolith Model

- Particles are simplified models of GRC-3 CT scans
- Regolith beds are generated by gravitational deposition

High Porosity Regolith

- Challenge to produce required porosity consistently
- Material properties like friction and cohesion adjustment
- Modeling sieves to achieve even surface

Solar Wind Particles Implantation

- Protons are represented by points (very small spheres)
- Randomly generated above the surface
- Stop moving as they touch a regolith particle

Implantation Rate Computation

- We analyze the vertical distribution when all particles stop
- Method: divide the vertical scale in segments and count particles within those segments

Simulation Stages

- Deposit particles to form regolith adjusting friction and cohesion to achieve required porosity
- Generate protons as points just above the regolith
- Set the constant velocity vector for the protons and "shoot" them into the regolith
- Compute vertical distribution of protons when all protons stop moving in terms of mean particle equivalent diameter:

$$d = \left(\frac{6V}{\pi}\right)^{1/3}$$

Surface Definition

Envelop surface around regolith particles to represent the ground 0

Particle size distribution

- Log-normal distribution resembles JSC1a simulant PSD measured at NASA GRC
- Cut window in distribution around its maximum symmetrically in log scale

PSD Influence

- Comparing different PSD while controlling the packing density (porosity)
- Wider distribution range allows protons to reach deeper in regolith
- There is not a significant difference for PSD window wider than 3-4x.

Packing Density Influence

- Packing of the particles strongly affects how many protons reach deeper layers
- We detect particles as deep as 8 particle layers for porous material

Incidence Angle Influence

 Implantation rate depth decreases with increasing incidence angle

 The protons still can penetrate into 4-5 layers

Gamma Distribution

- Gamma-distribution provides good fit for numerical computations
- It reduces the parameter space to 3 parameters
- The analysis of parameters is our next step

Proton Implantation Rate, log scale

$$f_{\Gamma}(x+x_0;k,\theta) = \frac{1}{\Gamma(k)\theta^k}(x+x_0)^{k-1}e^{-(x+x_0)/\theta}$$

Conclusions

- Discrete element method is adopted to compute the implantation rate for different layers of lunar regolith
- The penetration depth of protons strongly depends on porosity and 1/100,000 of all protons reach 7-8D and lower layers of particles.
- Wider particle size distribution provides deeper penetration of protons (perhaps around large particles)
- Gamma-distribution well fit into the implantation rate effectively reducing the parametric space to study

